

# System Integration & Test Gil Scott

**System Design Review - 29 June 1994** 

## **Agenda**



**Verification Goals** 

Impact of the ECS Design on Verification

**Verification Program Summary** 

**User Involvement** 

**Status & Roadmap** 

### **Verification Goals**



#### Field a Working ECS That:

- Satisfies Baselined Requirements
  - Verify IRDs and Level 3 Requirements
  - Traceability Assures that all requirements are verified RTM Tool
- Is Ready for Integration
  - External interfaces are tested/verified

    Early Engineering-level Testing with Outside Systems

    Formal Test with Simulators or Actual Interfaces
  - System Installed at Sites Site-Site Interfaces Verified Hardware Acceptance is Performed
- Fulfills User Needs
  - Verification Above Unit Level is Driven by User Scenarios
  - Segment I&T Focuses on Small Portions of a Scenario A Thread
  - System I&T Focuses on Longer Threads
  - Acceptance Testing Uses Actual User/OPS Scenarios
- Provides Representative Sample of Real Data to Support Testing

# Impact of the ECS Design on Verification



Flight System Architecture Largely Unchanged - No New Verification Focus

**Response: Continued Recognition of Criticality of Flight System** 

- Protect Space Resources & Maximize Science Collection
- Rigorous Formal Test Program
  - Multiple Independent Test Activities
  - Careful Traceability to Insure Complete Coverage

## Impact of the ECS Design on Verification



#### Science System Now a Federated, Distributed System

- Service Advertising/Brokering Paradigm Means Flows Through System are More Dynamic
- Architectural Decisions Require Much Leading Edge Technology Insertion via COTS
- ECS Delivers Both Components and a Configured Instance of Them

Response: Evolve the Science System Testing to Fit New Realities

- Recognize Criticalities to Rightsize Testing Effort
- Emphasize Interface Testing Because Configurations are Fluid
- Test Components (Objects) for Services Provided
- Verify Delivered System Meets Mission Requirements

**BUT, Remember That the System MUST WORK** 

### **Verification Program Summary**



The ECS Verification Program is a Progressive Group of Activities That:

- Are Performed by Developers, Segment I&T, System I&T and the IATO
- Examine Larger and Larger Parts of the System
- Are Requirements Driven, But Approach from Different Points-of-View
- Are Appropriate to the Criticality of the Function Under Test
- Are Witnessed by Different Groups
- Are Described in a Progression of Documents

### **Test Progression Example**





#### **User Involvement**



#### It is Recognized that:

- The Ultimate System Must Support Users & Operations Personnel
- Requirements in Isolation Often Don't Capture those Needs
- Without Understanding Those Needs, Verification Is Incomplete

#### Mitigation:

- Typical Scenarios are Source of Build/Thread Decomposition
- Acceptance Test Based on User & OPs Scenarios
- Participation
  - User Review of Plans & Procedures
  - Incorporate ECS Tirekickers and M&O Personnel as Operators in Tests
  - Intend to Schedule Beat-and-Bash Sessions During Preparation

### **Status - Roadmap**





# **Definitions** (Background Information)



**Verification** assures through test, demonstration, inspection or analysis that the delivered system meets requirements.

Scenarios are a series of actions that are performed (or occur) to accomplish an overall user or operational goal.

Threads are decompositions of scenarios into smaller, more manageable series of actions.

A *Software Thread* is the group of software components necessary to perform a thread.

A Software Build is an integrated collection of software threads.

## Release A Build/Thread Diagram



